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Real-Time Power System Dynamics Simulation
using a Parallel Block-Jacobi Preconditioned

Newton-GMRES scheme
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Abstract—Real-time dynamics simulation of large-scale power
systems is a computational challenge due to the need of solving
a large set of stiff nonlinear differential-algebraic equations.
The main bottleneck in these simulations is the solution of the
linear system during each nonlinear iteration of the Newton’s
method. We present a parallel linear solution scheme using
Krylov subspace based iterative solver GMRES with a Block-
Jacobi preconditioner that shows promising prospect of a real-
time dynamics simulation. The proposed linear solution scheme
shows a good speed up for a 2383 bus, 327 generator test
case. Results obtained for both stable and unstable operating
conditions show that real-time simulation speed can be realized
by using the proposed parallel linear solution scheme.

Index Terms—Transient Stability, Parallel Computing, Block-
Jacobi Preconditioner, Newton-GMRES, PETSc.

I. INTRODUCTION

THE need for faster, and accurate, power grid dynamics
simulation (or transient stability analysis) has been one

of the primary focus of the power system community in recent
years. This view was reiterated in the recent DOE and EPRI
workshops [13], [19]. More than two decades ago, real-time
dynamics simulation was identified as a ‘grand computing
challenge’ [22] and that view exists to date. As processor
speeds were increasing, real-time dynamics simulation ap-
peared possible in the not-too-distant future. Unfortunately,
processor clock speeds saturated about a decade ago.

Dynamics simulation of a large-scale power system is
computationally challenging due to the presence of a large
set of stiff nonlinear Differential-Algebraic Equations (DAEs),
where the differential equations model dynamics of the rotat-
ing machines (e.g., generators and motors) and the algebraic
equations represent the transmission system and quasi-static
loads. The electrical power system is expressed as a set of
nonlinear differential-algebraic equations, where f and g are
vector-valued nonlinear functions.

dx

dt
= f(x, y)

0 = g(x, y)
(1)

The solution of the dynamic model given in (1) needs
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• A numerical integration scheme to convert the differential
equations in algebraic form,

• A nonlinear solution scheme to solve the resultant non-
linear algebraic equations, and

• A linear solver to solve the update step at each iteration
of the nonlinear solution.

Figure 1 shows the wall-clock execution time of a series
of dynamics simulations on a single processor. As system size
increases, execution times grow dramatically. Thus ‘real- time’
dynamics analysis of a utility or a regional operator network
is an enormous computing challenge.

Fig. 1. Dynamic simulation execution times for different systems on a single
processor

For example, PJM, a regional transmission organization
(RTO) covering 168,500 square miles of 12 different states,
monitors approximately 13,500 buses [20]. Similarly, the
Electric Reliability Council of Texas (ERCOT) monitors ap-
proximately 18,000 buses [12]. High-level Eastern Intercon-
nection models contain more than 50,000 buses. To perform
dynamics simulation in real-time, the simulator must compute
the solution to a set of equations containing more than
150,000 variables in a few milliseconds. Because of this high
computational cost, dynamics analysis is usually performed
on relatively small interconnected power system models, and
computation is mainly performed off-line. Researchers at
Pacific Northwest National Laboratory have reported that a
simulation of 30 seconds of dynamic behavior of the Western
Interconnection requires about 10 minutes of computation time
today on an optimized single processor [16].
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II. SPEEDING POWER GRID DYNAMICS SIMULATION VIA
PARALLEL COMPUTING

A natural way to speed up this computation is to use par-
allel computing techniques, i.e., share the computational load
amongst multiple processors. The need for parallelizing exist-
ing power system applications is even greater as the computer
hardware industry moves towards multicore and many core
architectures. All major computer vendors are aggressively
introducing a new generation of hardware that incorporates
multiple cores on a chip, sometimes with additional simul-
taneous multithreading capabilities. Products incorporating 6
and 8 cores are already on the market. The number of cores per
chip is expected to grow rapidly, so that even in the relatively
short term, a single chip is expected to support the execution
of a few hundred threads. These multicore architectures can be
utilized efficiently only via parallel algorithms that distribute
the computational load over multiple cores. Several workshops
[13], [19] have highlighted the need for investigating these
multicore/manycore architectures for accelerating performance
of power system applications.

In the context of parallel algorithms for dynamic simu-
lations, most of the research effort was done over the last
decade. The parallel-in-space algorithms partition the given
network into loosely coupled or independent subnetworks.
Each processor is then assigned equations for a subnetwork.
The partitioning strategy for the network division is critical
for parallel-in-space algorithms to minimize the coupling
between the subnetworks, i.e., to reduce the inter-processor
communication, and balance the work load. Once a suitable
partitioning strategy is selected the next key thing is the
solution of the linear system in each Newton iteration. Several
linear solution schemes have proposed in the literature, of
which the prominent are the Very Dishonest Newton Method
and Conjugate gradient. Reference [8] uses the very dishonest
Newton method in which the factorization of the Jacobian ma-
trix is done only when a certain fixed number of iterations are
exceeded. Reference [10] decomposes the network equations
in a Block Bordered Diagonal Form (BBDF) and then uses
a hybrid solution scheme using LU and Conjugate gradient.
Reference [11] solves the network by a block-parallel version
of the preconditioned conjugate gradient method. The network
matrix in [11] is in the Near Block Diagonal Form (NBDF).

The Parallel-in-time approach was first introduced in [5].
The idea of this approach was to combine the differential and
algebraic equations over several time steps, create a bigger
system and solve them simultaneously using the Newton
method. All the equations for several integration steps are
assigned to each processor.

Waveform relaxation methods [17], [9], [15] involve a
hybrid scheme of space and time parallelization in which
the network is partitioned in space into subsystems and then
distributed to the processors. Several integration steps for each
subsystem are solved independently to get a first approxima-
tion [14]. The results are then exchanged and the process is
repeated. The advantage of this scheme is that each subsystem
can use a different integration step and/or different integration
algorithm (multi-rate integration).

III. PARALLEL DYNAMICS SIMULATION APPROACH

This section describes the details of the parallel implemen-
tation of our developed dynamics simulator. The dynamics
simulator is a three-phase dynamics simulator, unlike the
existing dynamics simulator that use a per-phase balanced
network model. The details of the developed three-phase
dynamics simulator can be found in [1], [2].

A. Domain decomposition

We adopt a domain decomposition approach that partitions
the power system network into several subnetworks. Figure
2 shows an illustrative example of the division of the IEEE
118 bus system into 2 subnetworks. Each subnetwork is then

Fig. 2. Partitioning of the IEEE 118 bus system for 2 processors

the domain of operation of a processor, i.e., each processor
is assigned the DAE equations for the subnetwork.Equation
(2) represents the equations for each processor where the
subscript p represents the variables for the current processor,
while subscript c represents the variables needed from other
processors to compute the function on the current processor.

dxp
dt

= f(xp, yp, yc)

0 = g(xp, yp, yc)
(2)

Note that differential equations, i.e. the electromechanical
machine equations, are naturally decoupled as they are only
incident at a bus while the algebraic network equations require
communication with other processors to compute their local
function. Hence the partitioning of the network is done only
using the topology of the network. The partitioning of the
network can be done by hand via judicious topology scanning
or by graph partitioning techniques.

For our developed simulator, we use the ParMetis package
[21] for doing the network partitioning. ParMetis is a parallel
graph partitioning package that is used for partitioning of
unstructured graphs. It tries to partition a given graph with
the objective of (a) minimizing the edge cuts while (b) having
balanced partitions, i.e., balancing computational load for each
processor.

The Parmetis package requires an Adjacency matrix whose
elements are 1s and 0s, where an element Ai,j is 1 if vertex i
is connected to vertex j. Along with the adjacency matrix, a
weight can be also can be assigned to each vertex to account
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for different computational requirement. With vertex weights,
ParMetis tries to minimize the edge cuts and also have the
same amount of vertex weights in each sub-domain.

For our developed simulator, the connection information
from the single-phase Ybus matrix of the network was used
as the adjacency graph for ParMetis. Larger weights were
assigned to the vertices having generators to account for the
extra computation involved for the generator differential and
algebraic equations.

B. Generalized Minimum Residual Method (GMRES)

Newton’s method requires the solution of the linear system

J(xi)∆xi+1 = −F (xi) (3)

where i is the iteration count. Solution of (3) can be either
done by direct or iterative methods. Krylov subspace iterative
methods are the most popular among the class of iterative
methods for solving large linear systems. These methods are
based on projection onto subspaces called Krylov subspaces
of the form b, Ab,A2b, A3b, . . .. A general projection method
for solving the linear system

Ax = b (4)

is a method which seeks an approximate solution xm from an
affine subspace x0 +Km of dimension m by impositng

b−Axm ⊥ Lm

where Lm is another subspace of dimension m. x0 is an
arbitrary initial guess to the soution. A krylov subspace method
is a method for which the subspace Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A2r0, A
3r0, . . . , A

m−1r0}

where r0 = b − Ax0 . The different versions of Krylov
subspace methods arise from different choices of the subspace
Lm and from the ways in which the system is preconditioned.

The Generalized Minimum Residual Method (GMRES)[24]
is a projection method based on taking Lm = AKm(A, r0)
in which Km is the m-th krylov subspace. This technique
minimizes the residual norm over all vectors x ∈ x0 +Km. In
particular, GMRES creates a sequence xm that minimizes the
norm of the residual at step m over the mth krylov subspace

||b−Axm||2 = min||b−Ax||2 (5)

At step m, an arnoldi process is applied for the mth krylov
subspace to generate the next basis vector. When the norm of
the new basis vector is sufficiently small, GMRES solves the
minimization problem

ym = argmin||βe1 − H̄my||2

where H̄m is the (m+ 1)xm upper Hessenberg matrix.

C. Block-Jacobi Preconditioner

The convergence of the Krylov subspace linear solvers
depends on the eigenvalues of the operating matrix A and can
be slow if the matrix has widely dispersed eigenvalues, such
as ill-conditioned power system matrices. Hence, to speed up
the convergence, a preconditioner matrix M−1, where M−1

approximates A−1, is generally used. A preconditioner is a
matrix which transforms the linear system

Ax = b

into another system with a better spectral properties for the
iterative solver. If M is the preconditioner matrix, then the
transformed linear system is

M−1Ax = M−1b (6)

Equation 6 is refered to as being preconditioned from the left,
but one can also precondition from the right

AM−1y = b, x = M−1y (7)

or split preconditioning

M−1
1 AM−1

2 y = M−1
1 b, x = M−1y (8)

where the preconditioner is M = M1M2.
When Krylov subspace methods are used, it is not necessary

to form the preconditioned matrices M−1A or AM−1 explic-
itly since this would be too expensive. Instead, matrix-vector
products with A and solutions of linear systems of the form
Mz = r are performed (or matrix-vector products with M−1

if this explicitly known).
Designing a good preconditioner depends on the choice

of iterative method, problem characteristics, and so forth. In
general a good preconditioner should be (a) cheap to construct
and apply, and (b) the preconditioned system should be easy
to solve.

With the Jacobian matrix in a nearly bordered block diag-
onal form, the diagonal block on each processor can be used
as a preconditioner. As an example, if the Jacobian matrix is
distributed to two processors (0 and 1) as follows

[0]
[1]

[
J1 J2
J3 J4

]
then the parallel Block-Jacobi preconditioner is

[0]
[1]

[
J−1
1

J−1
4

]
The factorization of J1 and J4 can be done independently on
each processor and no communication is required for building
the preconditioner.

D. Matrix reordering

By reordering the rows and columns of a matrix, it may
be possible to reduce the amount of fill-in created by LU
factorization, thereby decreasing the number of floating point
operations and storage. We experimented with various reorder-
ing strategies, available with PETSc, on the test systems to
determine the optimal reordering strategy, i.e., the ordering
scheme resulting in the least number of nonzeros in the
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factored matrix. The Quotient Minimum Degree ordering was
found to be the most optimal approach for the systems that
we tested.

IV. SCALABILITY RESULTS

The 2383 bus system provided with the MatPower [26]
package distribution was used to test the scalability of the
simulator. This test case has 327 generators, and 2896 branches
supplying a total load of 2455 MW. This case represents the
Polish 400, 220 and 110 kV networks during winter 1999-
2000 peak conditions. It is part of the 7500+ bus European
UCTE system. For the dynamic simulations, all the generators
were modeled using the GENROU model with an IEEE Type
1 exciter model [18] with the loads modeled as constant
impedance loads. The numerical integration scheme used is
an implicit trapezoidal scheme with a time step of 1 cycle or
0.01667 seconds.

The parallel performance runs were done on a shared
memory machine with four 2.2 GHz AMD Opteron 6274
processors. Each processor has 16 cores giving a total of 64
cores. The code for the developed simulator is written in C
using the PETSc library framework and compiled with GNU’s
gcc compiler with -O3 optimization.

Since our goal is realizing a real-time dynamics simulation,
we define the metric ‘real-time speedup factor’ sr given in (9)
to assess the proximity of the simulation to real-time. A value
of sr ≥ 1 indicates that the simulation is running in real-time
or faster than real-time.

sr =
Ts
Te

(9)

Ts is the simulation time length and Te is the simulation
execution time.

In the following subsections we present the scalability of
our dynamics simulator using a Block-Jacobi preconditioned
GMRES scheme and compare it with parallel sparse LU
factorization using the MUMPS [6] package. Two cases are
considered to assess the scalability (i) A three-phase fault on
bus 185 for 6 cycles that results in stable dynamics, and (ii)
A three-phase fault on bus 18 for 6 cycles that results in
unstable dynamics. The dynamics of the 2383 bus system were
simulated for a period of 3 seconds.

A. Stable case: Three-phase fault on bus 185

Figure 3 shows the dynamics of generator speeds for a
three-phase-fault on bus 185 for 6 cycles from t=0.0 sec to
t=0.01 sec. Bus 185 has a large load of 362 MW. Following
the fault, the generators depart from their synchronous mode
of operation but quickly regain synchronism as seen in Figure
3.

Figures 4 and 5 show the execution times and the real-time
speedup factor sr for the stable operating conditions. As seen,
the Block-Jacobi Newton-GMRES scheme shows significant
speed up as compared to a parallel LU factorization using
MUMPS.
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Fig. 3. Generator speeds for a three-phase fault applied for 6 cycles on bus
185

Fig. 4. Execution times for stable 2383 bus system dynamics

Fig. 5. Real-time speed factor for stable 2383 bus system dynamics

B. Unstable case

For testing the unstable dynamics, a three-phase fault was
placed on bus 18 for six cycles from t = 0.0 sec to t = 0.1 sec.
Bus 18 has a generator incident on it having the largest power
dispatch. As seen from 6 following the fault the generator on
bus 18 loses synchronism and its speed drops. The unstable
dynamics result in increased number of nonlinear, and linear,
iterations due to to increased swinging, or seperation, of the
generator speeds. For the stable case, the maximum number
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of Newton iterations taken by the solver was 3 while for the
unstable case it was 5. As seen in figures 7, the execution time
on 1 processor using the Block-Jacobi preconditioned GMRES
scheme takes about 22 seconds of execution time while on 24
cores it takes around 3 seconds, i.e. equal to the simulation
time length. Thus, real-time simulation is achieved on 24 cores
with the proposed scheme. In comparison, MUMPS does not
show good scalability with an execution time of about 16
seconds resulting in a real-time speed up factor factor of only
0.2.
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Fig. 6. Generator speeds for a three-phase fault applied for 6 cycles on bus
18

Fig. 7. Execution times for unstable 2383 bus system dynamics

V. PETSC: PORTABLE EXTENSIBLE TOOLKIT FOR
SCIENTIFIC COMPUTATION

Developing scalable software for existing and emerging
power system problems is a challenging task and requires
considerable time and effort. This effort can be reduced by
using high performance software libraries, such as PETSc,
which are tested on a gamut of scientific applications, used
on single-core machines to supercomputers, have highly opti-
mized implementations, and a wide array of tested numerical
solvers. High performance libraries have not yet been used
by the power system community for developing power system

Fig. 8. Real-time speed factor for unstable 2383 bus system dynamics

applications, but such libraries have been well explored by
researchers doing PDE simulations.

The Portable, Extensible Toolkit for Scientific Computation
(PETSc)[7] provides the building blocks for the implementa-
tion of large-scale application codes on parallel (and serial)
computers. It is a part of Department of Energy’s Advanced
Computational Software[4] collection and was the winner of
2009 R&D Top 100 awards [23]. PETSc has been also cited as
one of the Top 10 advances in computational science accom-
plishments of the U.S. Department of Energy in 2008 [25].
PETSc is funded primarily by the United States Department
of Energy, Office of Science, by the Advanced Scientific Com-
puting Research’s (ASCR) Applied Mathematics Research and
Scientific Discovery through Advanced Computing (SciDAC)
programs.

The PETSc package consists of a set of libraries for creating
parallel vectors, matrices, and distributed arrays, scalable
linear, nonlinear, and time-stepping solvers. The organization
of PETSc is shown in Figure 9.

Fig. 9. Organization of the PETSc library [7]

It is an open source package for the numerical solution of
large-scale applications and is free for anyone to use (BSD-
style license). It runs on operating systems such as Linux,
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Microsoft Windows, Apple Macintosh, and Unix. It can be
used from within the Microsoft Developers Studio. PETSc can
be configured to work with real or complex data types (not
mixed though), single or double precision, and 32 or 64-bit
integers. It has been tested on a variety of tightly coupled
parallel architectures such as Cray XT/5, Blue Gene/P, and
Earth Simulator, and also on loosely coupled architectures
such as networks of workstations.

PETSc uses a plug-in philosophy to interface with ex-
ternal softwares. Various external software packages such
as SuperLU, SuperLU Dist, ParMetis, MUMPS, PLAPACK,
Chaco, and Hypre can be installed with PETSc. PETSc pro-
vides an interface for these external packages so that they can
be used in PETSc application codes.

Allowing the user to modify parameters and options easily
at runtime is very desirable for many applications. For ex-
ample, the user can change the linear solution scheme from
GMRES to direct LU factorization, or can change the matrix
storage type, or preconditioners, via run-time options.

The wide range of sequential and parallel linear solvers,
preconditioners, reordering strategies, flexible run-time op-
tions, ease of code implementation, debugging options, and a
comprehensive source code profiler make PETSc an attractive
experimentation platform for developing our parallel dynamics
simulator. A good review of PETSc, and its use for developing
scalable power system simulations, can be found in [3].

VI. CONCLUSIONS

This paper presented real-time simulation of power sys-
tem dynamics using a parallel Block-Jacobi preconditioned
Newton-GMRES scheme. Results presented on a large 2383
bus system, with 327 generators for both stable and unstable
operating conditions show that real-time speed can be achieved
via the proposed scheme. Although the proposed scheme
shows that real-time power system dynamics simulation is
achievable, the proposed scheme, and other scalable algo-
rithms, need to be tested on various power system topologies
and operating conditions to test their viability in an online
environment. The PETSc library can accelerate the research
on developing and testing various scalable algorithms for real-
time dynamics simulation.
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